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Abstract--Some recent results obtained using solution-adaptive finite element methods in two-dimensional
problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive
finite element methods for validating the new methodology by computing demonstration problems and
comparing the stress intensity factors to analytical results.

1. INTRODUCTION

One of the most difficult analytical challenges in

engineering mechanics is the modeling of flawed

structures and the computation of the structural

response and flaw propagation. These models are

generally quite large for many space vehicle struc-
tures. The commercially available codes are often

used to model the unflawed structure and to perform

a stress analysis. These large models must then be

reconstructed manually to introduce a flaw and to

remesh the problem for accurate modeling of the

flaw. One of the most technically challenging areas is

fatigue crack propagation in these structural com-

ponents. Specifically, fatigue life prediction error

sources such as the stress intensity factors (SIF) are

difficult to quantify. Practically, SIFs are calculated

either from handbooks or other simplified equations.

However, these equations are applicable only for

structural components that approximate the defined

numerical and geometric conditions. Furthermore,

handbooks do not usually consider mixed mode

crack situations which are common for actual struc-

tures. Thus, there is a need to minimize the error

associated with SIF values and have them integrated

into fatigue models for improved fatigue life

predictions.

Much of contemporary fracture analysis still fol-

lows classical ideas. Modeling of complex geometries

has been difficult and conventional computational

procedures cannot provide accurate stress predictions

for bodies of complex shape. Many fracture theories

are developed with only simple stress states in mind

and are seldom factored into realistic stress environ-

ments of the type actually experienced in working

_:To whom all correspondence should be addressed.

structural components. In concept, many of the

shortcomings of classical fracture analysis may be

overcome through the development of more sophisti-

cated computational models. By using new finite

element capabilities and new concepts in fracture

mechanics, it should be possible to study a variety of
basic issues connected with fracture and crack

growth. These include the use of more elaborate

models of material constitution and component

geometry, more general crack initiation and growth

criteria, more accurate methods for prediction crack

development, and more physically reasonable models

of crack arrest mechanisms. Therefore, an effort has

been made on the development of the efficient and

accurate modeling technique of large space structures

containing flaws using solution-adaptive methods.

These procedures, using finite element methods, auto-

matically adjust the grid points for refinements of

meshes of quadrilateral elements to produce a mini-

mum error solution. A viable approach is to develop

a new fracture mechanics analysis tool which is based

on modern adaptive finite element methods. The

primary goals of this study are to: (1) develop an

advanced and reliable numerical method for perform-

ing linear elastic analysis of flawed structural com-

ponents; (2) validate the new methodology by

computing demonstration problems and comparing

the stress intensity factor to analytical results.

As a result, efficient solution-adaptive algorithms

are derived which are suitable for large-scale compu-

tations for the solution of confined crack regions and

a two-dimensional fracture mechanics analysis code

is developed in which a discrete least-squares algor-

ithm and an energy release method are implemented

and validated. Demonstration problems are also

computed and the SIFs compared with analytical

formula. The agreement is reasonably good and thus
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provides validation of the new methodology. A

general procedure and methods employed are given

in Sees 2 and 3, and the results of demonstration

problems are given in Sec. 4.

2. ADAPTIVE COMPUTATIONAL METHODS

2.1. Adaptive schemes

Adaptive methods, which are numerical schemes

which automatically adjust themselves to improve
numerical solutions, are generally composed of

three key ingredients. The first of these is an
adaptive scheme which is capable of dynamically

modifying the structure of the computational grid.

The second crucial component is an error estimator

or error indicator which is used to identify regions

of the computational domain which contain

relatively large numerical errors. The final necessary
ingredient is an adaptive methodology which

combines the mesh modification schemes with the

error estimators to produce a robust and efficient

refinement sequence.

The first work on adaptive finite element methods

was presented in 1971 by Oliveira [1] which discussed

grid optimization by minimizing the energy through

optimal node redistribution. This type of approach,

node redistribution, is the basis of moving mesh

adaptive methods (r-methods) developed for both

solid mechanics problems and flow analysis[l-8].

Following this work, several other adaptive finite

element schemes have emerged which include h-

refinement methods, which subdivide the elements

of the computational domain [9-13], p-enrichment

methods, which increase the polynomial order of

the approximations[14-18], and h-p methods,

which increase the polynomial order, as well as

subdivide the elements comprising the grid [19-23].

In these schemes, the mesh is automatically refined

when the local error indicator exceeds a preassigned

tolerance. The h-scheme presents a difficult data

management problem, since they involve a

dynamic regeneration of the mesh, renumbering

of grid points, cells or elements, and element
connectivities as the mesh is refined. Since it has

been proven that the h-methods can be very

effective in producing near-optimal meshes for

given error tolerances and also be used to coarsen

a mesh (use large mesh cells and thereby reduce

the number of unknowns) when the local-error

becomes lower than an assigned lower-bound

tolerance among the adaptive methods [9], the h-

method is taken in this study. A sample calculation

obtained with our h-method is shown in Fig. 1 for

a uniformly loaded plate containing a crack. Our

procedure dynamically refines the mesh, assigning

large elements where the error is small and small

elements where the error tends to be large, thus

capturing the singularity of the crack tip. Computed

contours of the tr,. stress component are also shown

in the figure.

i

i
I

I I I
f!

t i I

J !
I f, t

I

i_l,

.+fd. !

1

t

!

i

!i
n

wlmnu_l iJmo qntmln_ .u,_' _ __ _ _ .,,upwNl' lint.t, ._t,tl,,ul_ _
,nit,trot _ _ a._

I\ // i

• i

_ I ,-"_ _'

_, -- "1," I/

i X

,I i \
V ---' \

, /! i x ti

Fig. 1. Uniformly loaded crack plates: h-adapted mesh and

ay stress contours. Note that the model is not exactly
symmetric for the top and bottom parts.

2.2. Error estimation

An adaptive scheme is essentially useless without a

reliable, accurate, and efficient error indicator. The

error indicator provides an estimate of the local error
in the numerical solution and an indication where the

grid should be adapted. In general, there are two

distinct types of error estimators, interpolation error

estimators and residual error estimators. The inter-

polation error estimates typically provide only a very

crude estimate of the error, but usually provide a very

good indication of the relative errors and are quite

inexpensive to implement. Residual methods, on the

other hand, typically provide a much better estimate
of the actual error in the numerical solution but are
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generally much more computationally expensive.

Therefore, the interpolation error estimates are taken

in this study. Some general properties of the distri-

bution of error in finite element meshes and the use

of so-called interpolation error estimates shall be

discussed here. This easily implementable local esti-

mator sometimes provides only a rather crude

estimate of the actual local error but can be divised

to give a correct indication of the relative error

between successive meshes or approximation orders

and, thus, correctly direct an adaptive strategy to

systematically reduce local error. For a more detailed

discussion of interpolation theory, see [24, 25]. The

simplified theory of this error estimates follows.

Let u be a smooth function defined over a regular

domain f_c 9_2. The W"P(_)-seminorm ofu is defined

by

,ulw,._<n, = {;n - I- _;÷ju -IP dfl)l"P

i,/>_O

where I < p < vo and r is a non-negative integer. For

the special case ofp = oo, which is also of interest, the

Wr'P(Q)-seminorm is given by

lulw,,_ln_= max max _l. (2)

i,j>_o

With these definitions of the seminorm, the Sobolev
norm of u is then

k=O

Let G be an arbitrary convex subdomain (a finite

element) of _ over which u is interpolated by a

function ah which contains complete piece poly-

nomials of degree k. Then it can be shown that

the local interpolation error in the W"'P'(fl)-semi -

norm is

C hk+l<< .__ . h<,+'>-t.,;p), lulw_+.,ptn),
y,.

Suppose that u on the right-hand side is now replaced

by a finite element approximation uh and

lua Ik+ _,p= lu [k+ _,p+ O (h). Then the above estimate

indicates that the local error in the W"'P'(G)-semi -

norm is proportional to the error indicator,

hl"/P') _":'>+k+J-'_lUlk+ I,p" Some choices for n, m, k, p,

and p' of interest are:

(i) n=2, m=0, k=l,p=p'=2 then

h h 2Ig I£_G_ C" "luh,2,6. (7)

In this case, one must approximate the WZ"-semi -

norm of u over _; i.e., the L2-norm of the second

partial derivatives of u. The error indicator 0, is then

set equal to IEhlz2_q._ for finite element _,.

(ii) n=2, p=oo, p'=l,k =0, m =0 then

h _ h 2 h .h 3[E 1£'_c_- C' ]u]l._.._• [E ..... g_[ <_ C •

_< C" h3 • max IV' u(x)l (8)
.x_ G

then we have for the error indicator 0_

h
IE I..... , ..... n, _O,=h.maxiV.u(x)l. (9)

xEG

In all of these cases, it is also possible to estimate the

constant C. While we shall not describe how this is

done (see [25]), our experience is that it is a worth-

while computation that can lead to schemes with

good effectivity indices.

(3) 2.3. Adaptive methodology

We shall now suppose that an error indicator 0, can

be calculated for each finite element r, in a given

mesh. The error indicator is, in general, a real number

representing the local error on a suitable norm, and

it is computed using one of the procedures described

in the next section.

The decision to refine the mesh is based on whether

or not local-indicators exceed preassigned tolerances

and can be summarized by the following steps.

(4) h-Refinement/unrefinement methodology. The h-

procedure involves the following steps:

where h is the diameter of domain G, ), is the diameter

of the largest sphere that can be inscribed inside G,

n is the dimension of the domain r, C is a constant

independent of h, and p' is p/(p - I). If ? is pro-

portional to h, and if it remains proportional in

refinements of G defined by parametrically reducing

h, we have

IE%,.p,,a<_ C.h_",P'_-<"P)+k+l-'.lulk+,,_ (5)

with

I" I..._.._= I" I,,-.,_, etc. and E* = u - tT_. (6)

I. For a given domain fl, a coarse finite element is

constructed which contains only a number of ele-

ments sufficient to model basic geometric features of
the domain.

2. As the adaptive process is designed to handle

groups of four elements at a time, a finer starting grid

may be generated by a bisection process, if desired,

to obtain an initial set of element groups.
3. The numerical solution is calculated on this

initial coarse grid, and the error indicators 0, are

computed over all M elements in the grid. Let

0m_ = max 0_. (10)
l<e_M
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4. The groups of elements are scanned and the

group errors are computed

P

o_,oop=Y, o,,, OI)
k=l

where ek is an element number in group k and p = 4.

5. Error tolerances are defined by two real num-

bers, 0<_, fl < i. If

0 e_ fl "Oma_ (12)

element e is refined. This is done by bisecting element

e into four new subelements. If

k
OGroup ,,¢. O( " Ornax (13)

group k is unrefined by replacing this group with a

single new element with nodes coincident with the

corner nodes of the group.
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This general process can be followed by any choice

of an error indicator. Moreover, it can also be

implemented with any boundary frequency in the

solution of transient problems or problems with

time-dependent boundary conditions.

3. CALCULATIONS OF SIFs

Fracture mechanics within the linear theory of

elasticity is known as linear elastic fracture mechanics

(LEFM). Linear elastic fracture analysis is valid if the

assumption of small-scale yielding, namely when the

inelastic region in the vicinity of each crack tip is well

within the range of validity of the asymptotic sol-
utions of the crack in an infinite elastic medium.

Assuming that the crack faces are free of traction, the

asymptotic expressions for the neighborhood of the

crack tip are given in [34]. In this study the stress

intensity factors were calculated using one of the

following methods.

3.1. Discrete least-square fits

Consider a patch of elements around the crack tip

as shown in Fig. 2; for example, we may define

Dtip = {x e De[ [x_ _t - xtip I _< R(h)}. (14)

Let us define the discrete least squares functional

nintp

J(K,, KII ) = E (o-; - o'y'Ym)r
j-I

asymx O-'.(_-aj )Wj. (15)

Here, x_ "_ is the position vector for the centroid of

element fl,, x _p is the position vector for the tip of

the crack, R(h) is the radius of the disk which

includes the centroids of the element of the subdo-

main, which is assumed to be a function of the mesh

size h, a_ = O'h(Xj) denotes the approximate stress

vector at point xj, a_ ,y_ = a_'ym(xj ; KI, KH)

Fig. 2. A subdomain which includes the elements of the
grids with centroids in the interior of the disk
{x eGIIx t_p- xl _<R(h)}. The elements which include the

crack tip appear shaded.

denotes the asymptotic stress vector at point xj, D

is the inverse of the material modulus matrix, xj

denotes an investigation point from the set of inte-

gration points of the elements which form f_,_p, Wj

denotes the weight for the jth integration point, and

nintp denotes the total number of integration points

in the subdomain _p.

The components of the stress a_ym(x, KI, K_x) de-

pend linearly on the SIFs; their analytical expression

is given in [33]. Approximate values for the SIFs are

extracted as minimizers of the discrete least squares

functional J(Kt, K,); the condition of a stationary

value leads to a two-by-two system of linear

equations for the approximate values of Kt and K n,

namely

nintp _ (O-iasym) r
t3J -2

_K_ t_K Ij_l

xD-'.(a_-aff y_-Wj)=O (16)

aJ 2 _ p d(affym)r

x D-" (a_- aj '_m' W/) = O. (17)

A bilinear element is employed to compute the ap-

proximate finite element solution and the discrete

least squares functional in each element is defined

using 1 x i and 2 x 2 Gauss integration rules. Let K],

K_, and K_, and K_, denote the extracted values of

the SIFs corresponding to the use of the 1 x 1 and

2 x 2 rules in the definition of the functional. Since

the definition of the K _ values involves superconver-

gent values of stress at the centroids of the elements,
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Fig. 3. Planar crack in three dimensions.
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the following hypothesis was taken from the numeri-

cal experiments to determine that the error in the K 2

values of the SIFs can be estimated by comparing
them with the K I values

K - K: -_ K I - K 2. (18)

3.2. Equivalent domain integral methods

Equivalent domain methods were developed by

Shih, Moran and co-workers[26-28]. Li et al. [26]

derived a volume integral expression for the energy

release rate which can be naturally employed to

extract the energy release rate along three-
dimensional crack fronts from three-dimensional

finite element calculations. Also, the two-dimensional

area integral analog of the volume integral expression

was described. The energy release rate is defined

as follows: Consider a planar crack front with a

continuously turning tangent as shown in Fig. 3, Let

6L(s) denote the crack advance at the points in the

direction normal to the crack front and ds denote the

length of a crack element along the crack front. Then,

within first-order terms in 6L(s)and G(s), namely the

pointwise energy release rate at the location s of the

crack front, defined by (see [26] and references

therein)

f_ G(s). 6L(s) ds = -6n. (19)
rack fronl

Here 6n denotes the change in the total potential

energy due to the local advance of the crack given by

tSL(s). The above definition may be considered as a

weak or variational statement satisfied by the energy

release rate function, which is defined along the crack

front. Li et al. [26] suggested a volume-integral

ql (x)

X 2

X1

Fig. 4. Schematic definition of the q:function.
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x 2

_ FI_

Fig. 5. Definition of the parameters involved in the definition of the components of the J-integral.

expression for the energy release rate; the two-

dimensional version of this expression reads as

follows (see [26], pp. 408-409 for the derivation):

f
G = J = -- PI/ "'d12.

j_, Oxj
(20)

Here A t denotes the simply connected region of

integration in Fig. 6 and

_U t'

Ptj = --ff O-_x I -- W " 61)

is the x_-component of Eshelby's energy momentum

tensor [29, 30], W is the strain energy density, and qt

is a sufficiently smooth function in At which is unity

on the inner boundary Ct and vanishes on the outer

boundary (72 of A I.

A general study of crack-tip contours and domain

integrals was presented by Moran and Shih [27, 28].

In two dimensions, the energy release rate is ex-

pressed by an equivalent domain integral given by

eqn (20); a schematic definition of the integration

domain At and the weight function qj is given in

Fig. 4. According to[31] the basic definition of

C2

Fig. 6. Simply connected region At with subsets C_ and C2
of the boundary,

J-integral components, as crack-tip parameters, is

(see Fig. 5) given by

Jk=iim,s0 , W.nk .... a° dxk nj dF. (21)

Here 14,' is the stress-work density, o a are stresses, u_

are displacements, nk are components of the unit

normal vector at points on the contour F. A local

crack front coordinate system is given by xt and x2:

xt is normal to the crack front, xz is orthogonal to xt.

In the linear elastic case, it is possible to define SlFs

through the calculation of Jk (k = 1, 2). According

to [32] the relationships between the J-integral com-

ponents and the stress factors are

x, = _e'(v'Z, - J_+ _ J,) (22)

Kit = ½E'(_ - ,/2 - _ + J2), (23)

where

E* = for plane strain state

for plane stress state.

o_t_t2
T

Fig. 7. Single edge crack.
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Fig. 8. Edge cracked beam.
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4. NUMERICAL EXAMPLES

This section presents the demonstration problems.

The cases consist of a single edge crack and an edge

cracked beam; both cases were computed using two

different crack lengths. The results for each case are

shown as stress contour plots on the deformed shape

scaled by a factor of 100 to clearly show crack.

Fifteen to twenty levels of refinement were used to

compute the SIFs using the methods shown in Sec. 3.

The 'equivalent-domain integral' method was used

for problems 1 and the 'discrete least-squares fits'

method was used for problem 2.

4.1. Single edge crack (problem I)

Figure 7 is a schematic of this demonstration

problem. The problem parameters are given as
follows. Dimensions: L = 12 inches, W = 4inches,

and T= 1.0inch. Material properties: E = 106psi

and v = 0.3. Crack lengths: a = 2.0 and 0.2 inches.

Stress distribution: a = 100ksi (top and bottom).

Mode I stress intensity factors were calculated at each

crack length for the given stress distributions and

both crack lengths for two cases of this problem.

4.l.1. Crack length a = 2.0 (problem IA). The rep-

resentative solutions for this problem are shown in

(a)
71

g2 S$ S¢ "_ II ?Z

4g 5D 51 5'7 56 56

N _ m ,m _ mJ

46 47 48 _ 66 66

43 44 4S 61 BZ 63

g _ m )I N m

40 41 42 _ 59 60

B! I_ m _ el 12

39' lib )9 55 55 5"#

m i m m 4T Ig

I0 17 16 3_ 33 66

n _ N _ e5

1_ lq 16 3_ 5Z _6

Lr m • m it

IO 11 )Z Z'_ Z9 30

_m 14 ts I| m |o

7 B 9 Z5 Z5 Zl

Io II t3 P5 I_

4 5 5 ZZ Z$ Z4

e o 12 &9

I Z _ 19 ZO Z]

2 q _ |o

(b)

I i

I
I

• L'_ •

I

Fig. 9. Problem IA: (a) initial grid, (b) fourth level refinement grid. Note that the grids are scaled by a factor of 100 to
clearly show the crack•
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(a) (b)

/
r-
I

v'-

/

7

_J

I
Fig. 10. Problem 1A: (a) a x for fourth level refinement grid, (b) ay for fourth level refinement grid. Note that the grids

are scaled by a factor of 100 to clearly show the crack.

(a) (b)
-m 71 ?z

8-/ 68 68

6_ 8_ 80

6! 6Z $_

Sg 60

_dl SS 36

_1 SZ 35

21_ Z| 30

Z5 Z$ Z?

ZZ £_ Z_

|g ZO Z]

Fig. I 1, Problem IB: (a) initial grid, (b) fourth level refinement grid. Note that the grids are scaled by a factor of 100 to

clearly show the crack,
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Table 1. SIF comparisons for example problem 1

Adaptive FEM Ref. [33] Ref. [34]

Problem IA 715 755 706
Problem IB 87.5 89.9 89.6

Figs 9 and 10. Figure 9 shows the initial grid distri-

bution and fourth level refinement. Figure 9 shows

the grid with ax and % contours for the fourth level
of refinement.

4.1.2. Crack length a = 0.2 (problem 1B). The rep-

resentative solutions for this problem are shown in

Figs I1 and 12. Figure il shows the initial grid

distribution for this case. Figure 12 shows the grid

and fourth level refinement with a_ and ay contours

for the fourth level of refinement.

4.1.3. Validation for problem I. The 'energy

release' method was used in this problem.

References [33] and [34] provide formulas for

estimating the SIF for this problem. The formulas

used are of the form

a

K_=a'x/_'a'F(h), h=_. (24)

The references use fourth-order expansion in h to

determine the multiplier F. Table I compares K_

obtained from the adaptive finite element code and

the analytical formulas from the references.

4.2. Edge cracked beam (problem 2)

Figure 8 is a schematic of this problem. The

problem parameters are given as follows.

Dimensions: W = 2 inches, L = 4W = 8 inches, T =

1.0inch. Material properties: E = 10_psi, v =0.3.

Crack lengths: a = 0.5 and 0.1 inches. Stress distri-

bution: P = 50001b (point load). Mode I stress

intensity factors were calculated for both crack

lengths for two cases of this problem.

4.2.1. Crack length a = 0.5 (problem 2A). Figure 13

shows the initial and fourth level refinement grid

distribution. The solutions of fourth level of refine-

ment for this problem are shown in Fig. 14 to show

the grid with ax and ay contours for this level of
refinement.

4.2.2. Crack length a = O. 1 (problem 2B). The sol-

utions of this problem are shown in Figs 15 and 16.

Figure 16 shows the grid with crx and Crycontours for

the fourth level of refinement.

4.2.3. Validation for problem 2. The 'least squares'

method was used in this problem. References [33] and

[34] provide formulas for estimating the SIF for this

problem. The formula used are of the form

Kt=a._.F(h), h a=--

W

6. M PL

a = --W--_' n = -_-. (25)

(a) (b)

\ /:>
/

\
\/

Fig. 12. Problem IB: (a) a_ for fourth level refinement grid, (b) ay for fourth level refinement grid. Note that the grids are
scaled by a factor of 100 to clearly show the crack.

CAS 50:3-J
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Fig. 13. (a) Initial grid; (b) fourth level refinement grid of problem 2A.

(a)

(b)

Fig. 14. (a) (7_on the fourth level refinement grid; (b) (7>on the fourth level refinement grid of problem 2A. (Note: grid
scaled by a factor of 100 to clearly show the crack.)
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(b)

Fig. 15. (a) Initial grid; (b) fourth level refinement grid of problem 2B.

(a)

(b)

Fig. 16. (a) o, on the fourth level refinement grid; (b) _>.on fourth level refinement grid of problem 2B.
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Table 2. SIF comparisons for example problem 2 12.

Adapative FEM Ref. [33] Ref. [34]

Problem 2A 17,901 18,917 20,301
Problem 2B 861 ! 8418 8985

The references uses the fourth-order expansions in h

to determine the multiplier F. Table 2 compares Kt

obtained from this study with K_ obtained using the

analytical formula from the references.

5. CONCLUSIONS

A solution-adaptive computational method has

been developed and implemented for accurately de-

termining the SIFs of two-dimensional crack

configurations with predetermined crack locations

and loading conditions. This new method and pro-

cedures have been validated for demonstration prob-

lems showing reasonably good agreement with

analytical formula and can be used for performing

the two-dimensional fracture mechanics analysis in

complex structures. Also, this study demonstrated the

feasibility of the methodology developed to be ex-

tended in the three-dimensional analyses.
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